Landmark selection for spectral clustering based on Weighted PageRank

نویسندگان

  • Dimitrios Rafailidis
  • Eleni Constantinou
  • Yannis Manolopoulos
چکیده

Spectral clustering methods have various real-world applications, such as face recognition, community detection, protein sequences clustering etc. Although spectral clustering methods can detect arbitrary shaped clusters, resulting thus in high clustering accuracy, the heavy computational cost limits their scalability. In this paper, we propose an accelerated spectral clustering method based on landmark selection. According to the Weighted PageRank algorithm, the most important nodes of the data affinity graph are selected as landmarks. Furthermore, the selected landmarks are provided to a landmark spectral clustering technique to achieve scalable and accurate clustering. In our experiments, by using two benchmark face and shape image data sets, we examine several landmark selection strategies for scalable spectral clustering that either ignore or consider the topological properties of the data in the affinity graph. Also, we show that the proposed method outperforms baseline and accelerated spectral clustering methods, in terms of computational cost and clustering accuracy, respectively. Finally, we provide future directions in spectral clustering.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scalable Spectral Clustering with Weighted PageRank

In this paper, we propose an accelerated spectral clustering method, using a landmark selection strategy. According to the weighted PageRank algorithm, the most important nodes of the data affinity graph are selected as landmarks. The selected landmarks are provided to a landmark spectral clustering technique to achieve scalable and accurate clustering. In our experiments with two benchmark fac...

متن کامل

A Framework for Optimal Attribute Evaluation and Selection in Hesitant Fuzzy Environment Based on Enhanced Ordered Weighted Entropy Approach for Medical Dataset

Background: In this paper, a generic hesitant fuzzy set (HFS) model for clustering various ECG beats according to weights of attributes is proposed. A comprehensive review of the electrocardiogram signal classification and segmentation methodologies indicates that algorithms which are able to effectively handle the nonstationary and uncertainty of the signals should be used for ECG analysis. Ex...

متن کامل

A Novel Approach to Feature Selection Using PageRank algorithm for Web Page Classification

In this paper, a novel filter-based approach is proposed using the PageRank algorithm to select the optimal subset of features as well as to compute their weights for web page classification. To evaluate the proposed approach multiple experiments are performed using accuracy score as the main criterion on four different datasets, namely WebKB, Reuters-R8, Reuters-R52, and 20NewsGroups. By analy...

متن کامل

On landmark selection and sampling in high-dimensional data analysis

In recent years, the spectral analysis of appropriately defined kernel matrices has emerged as a principled way to extract the low-dimensional structure often prevalent in high-dimensional data. Here, we provide an introduction to spectral methods for linear and nonlinear dimension reduction, emphasizing ways to overcome the computational limitations currently faced by practitioners with massiv...

متن کامل

Weighted Ensemble Clustering for Increasing the Accuracy of the Final Clustering

Clustering algorithms are highly dependent on different factors such as the number of clusters, the specific clustering algorithm, and the used distance measure. Inspired from ensemble classification, one approach to reduce the effect of these factors on the final clustering is ensemble clustering. Since weighting the base classifiers has been a successful idea in ensemble classification, in th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Future Generation Comp. Syst.

دوره 68  شماره 

صفحات  -

تاریخ انتشار 2017